skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gilbert, Kadeem J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis , Cynipidae, Hymenoptera) induced on red oak ( Quercus rubra ), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography–mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids. 
    more » « less
  3. Crous, Kristine (Ed.)
    Abstract Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant’s biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane—that is, the outermost surface of the leaf—varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions. 
    more » « less
  4. Abstract To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands. 
    more » « less